Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612803

ABSTRACT

Immuno-oncology has gained momentum with the approval of antibodies with clinical activities in different indications. Unfortunately, for anti-PD (L)1 agents in monotherapy, only half of the treated population achieves a clinical response. For other agents, such as anti-CTLA4 antibodies, no biomarkers exist, and tolerability can limit administration. In this study, using publicly available genomic datasets, we evaluated the expression of the macrophage scavenger receptor-A (SR-A) (MSR1) and its association with a response to check-point inhibitors (CPI). MSR1 was associated with the presence of macrophages, dendritic cells (DCs) and neutrophils in most of the studied indications. The presence of MSR1 was associated with macrophages with a pro-tumoral phenotype and correlated with TIM3 expression. MSR1 predicted favorable overall survival in patients treated with anti-PD1 (HR: 0.56, FDR: 1%, p = 2.6 × 10-5), anti PD-L1 (HR: 0.66, FDR: 20%, p = 0.00098) and anti-CTLA4 (HR: 0.37, FDR: 1%, p = 4.8 × 10-5). When specifically studying skin cutaneous melanoma (SKCM), we observed similar effects for anti-PD1 (HR: 0.65, FDR: 50%, p = 0.0072) and anti-CTLA4 (HR: 0.35, FDR: 1%, p = 4.1 × 10-5). In a different dataset of SKCM patients, the expression of MSR1 predicted a clinical response to anti-CTLA4 (AUC: 0.61, p = 2.9 × 10-2). Here, we describe the expression of MSR1 in some solid tumors and its association with innate cells and M2 phenotype macrophages. Of note, the presence of MSR1 predicted a response to CPI and, particularly, anti-CTLA4 therapies in different cohorts of patients. Future studies should prospectively explore the association of MSR1 expression and the response to anti-CTLA4 strategies in solid tumors.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/genetics , Gene Expression Profiling , Transcriptome , Medical Oncology , Scavenger Receptors, Class A
2.
Mar Drugs ; 22(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38667795

ABSTRACT

This open-label, two-part, phase Ib drug-drug interaction study investigated whether the pharmacokinetic (PK) and safety profiles of lurbinectedin (LRB), a marine-derived drug, are affected by co-administration of itraconazole (ITZ), a strong CYP3A4 inhibitor, in adult patients with advanced solid tumors. In Part A, three patients were sequentially assigned to Sequence 1 (LRB 0.8 mg/m2, 1-h intravenous [IV] + ITZ 200 mg/day oral in Cycle 1 [C1] and LRB alone 3.2 mg/m2, 1 h, IV in Cycle 2 [C2]). In Part B, 11 patients were randomized (1:1) to receive either Sequence 1 (LRB at 0.9 mg/m2 + ITZ in C1 and LRB alone in C2) or Sequence 2 (LRB alone in C1 and LRB + ITZ in C2). Eleven patients were evaluable for PK analysis: three in Part A and eight in Part B (four per sequence). The systemic total exposure of LRB increased with ITZ co-administration: 15% for Cmax, area under the curve (AUC) 2.4-fold for AUC0-t and 2.7-fold for AUC0-∞. Co-administration with ITZ produced statistically significant modifications in the unbound plasma LRB PK parameters. The LRB safety profile was consistent with the toxicities described in previous studies. Co-administration with multiple doses of ITZ significantly altered LRB systemic exposure. Hence, to avoid LRB overexposure when co-administered with strong CYP3A4 inhibitors, an LRB dose reduction proportional to CL reduction should be applied.


Subject(s)
Carbolines , Cytochrome P-450 CYP3A Inhibitors , Drug Interactions , Heterocyclic Compounds, 4 or More Rings , Itraconazole , Neoplasms , Humans , Itraconazole/pharmacokinetics , Itraconazole/administration & dosage , Itraconazole/adverse effects , Male , Middle Aged , Female , Aged , Neoplasms/drug therapy , Heterocyclic Compounds, 4 or More Rings/pharmacokinetics , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Heterocyclic Compounds, 4 or More Rings/adverse effects , Cytochrome P-450 CYP3A Inhibitors/administration & dosage , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Carbolines/pharmacokinetics , Carbolines/administration & dosage , Carbolines/adverse effects , Adult , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/administration & dosage , Heterocyclic Compounds, 3-Ring/adverse effects , Area Under Curve , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/adverse effects , Antineoplastic Agents/administration & dosage
3.
Clin Cancer Res ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506710

ABSTRACT

PURPOSE: Personalized vaccines targeting multiple neoantigens (nAgs) are a promising strategy for eliciting a diversified antitumor T cell response to overcome tumor heterogeneity. NOUS-PEV is a vector based personalized vaccine, expressing 60 nAgs and consists of priming with a non-human Great Ape Adenoviral vector (GAd20) followed by boosts with Modified Vaccinia Ankara (MVA). Here, we report data of a phase Ib trial of NOUS-PEV in combination with pembrolizumab in treatment naïve metastatic melanoma patients (NCT04990479). EXPERIMENTAL DESIGN: The feasibility of this approach was demonstrated by producing, releasing and administering to six patients 11 out of 12 vaccines within 8 weeks from biopsy collection to GAd20 administration. RESULTS: The regimen was safe, with no treatment-related serious adverse events observed and mild vaccine-related reactions. Vaccine immunogenicity was demonstrated in all evaluable patients receiving the prime/boost regimen, with detection of robust neoantigen specific immune responses to multiple neoantigens comprising both CD4 and CD8 T cells. Expansion and diversification of vaccine-induced TCR clonotypes was observed in the post-treatment biopsies of patients with clinical response providing evidence of tumor infiltration by vaccine-induced neoantigen-specific T cell. CONCLUSIONS: These findings indicate the ability of NOUS-PEV to amplify and broaden the repertoire of tumor reactive T cells to empower a diverse, potent and durable antitumor immune response. Finally, a gene signature indicative for reduced presence of activated T cells together with very poor expression of the antigen processing machinery (APM) genes has been identified in pre-treatment biopsies as a potential biomarker of resistance to the treatment.

4.
Nat Med ; 30(3): 762-771, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38321218

ABSTRACT

Among the 'most wanted' targets in cancer therapy is the oncogene MYC, which coordinates key transcriptional programs in tumor development and maintenance. It has, however, long been considered undruggable. OMO-103 is a MYC inhibitor consisting of a 91-amino acid miniprotein. Here we present results from a phase 1 study of OMO-103 in advanced solid tumors, established to examine safety and tolerability as primary outcomes and pharmacokinetics, recommended phase 2 dose and preliminary signs of activity as secondary ones. A classical 3 + 3 design was used for dose escalation of weekly intravenous, single-agent OMO-103 administration in 21-day cycles, encompassing six dose levels (DLs). A total of 22 patients were enrolled, with treatment maintained until disease progression. The most common adverse events were grade 1 infusion-related reactions, occurring in ten patients. One dose-limiting toxicity occurred at DL5. Pharmacokinetics showed nonlinearity, with tissue saturation signs at DL5 and a terminal half-life in serum of 40 h. Of the 19 patients evaluable for response, 12 reached the predefined 9-week time point for assessment of drug antitumor activity, eight of those showing stable disease by computed tomography. One patient defined as stable disease by response evaluation criteria in solid tumors showed a 49% reduction in total tumor volume at best response. Transcriptomic analysis supported target engagement in tumor biopsies. In addition, we identified soluble factors that are potential pharmacodynamic and predictive response markers. Based on all these data, the recommended phase 2 dose was determined as DL5 (6.48 mg kg-1).ClinicalTrials.gov identifier: NCT04808362 .


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology
5.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396898

ABSTRACT

The identification of surfaceome proteins is a main goal in cancer research to design antibody-based therapeutic strategies. T cell engagers based on KLK2, a kallikrein specifically expressed in prostate cancer (PRAD), are currently in early clinical development. Using genomic information from different sources, we evaluated the immune microenvironment and genomic profile of prostate tumors with high expression of KLK2. KLK2 was specifically expressed in PRAD but it was not significant associated with Gleason score. Additionally, KLK2 expression did not associate with the presence of any immune cell population and T cell activating markers. A mild correlation between the high expression of KLK2 and the deletion of TMPRSS2 was identified. KLK2 expression associated with high levels of surface proteins linked with a detrimental response to immune checkpoint inhibitors (ICIs) including CHRNA2, FAM174B, OR51E2, TSPAN1, PTPRN2, and the non-surface protein TRPM4. However, no association of these genes with an outcome in PRAD was observed. Finally, the expression of these genes in PRAD did not associate with an outcome in PRAD and any immune populations. We describe the immunologic microenvironment on PRAD tumors with a high expression of KLK2, including a gene signature linked with an inert immune microenvironment, that predicts the response to ICIs in other tumor types. Strategies targeting KLK2 with T cell engagers or antibody-drug conjugates will define whether T cell mobilization or antigen release and stimulation of immune cell death are sufficient effects to induce clinical activity.


Subject(s)
Kallikreins , Prostatic Neoplasms , Receptors, Odorant , Humans , Male , Genomics , Kallikreins/genetics , Kallikreins/immunology , Kallikreins/metabolism , Neoplasm Proteins , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Prostatic Neoplasms/metabolism , Tetraspanins , Tumor Microenvironment/genetics
6.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38399397

ABSTRACT

This open-label, two-way, crossover, phase Ib drug-drug interaction study investigated whether the pharmacokinetics (PKs) and safety profile of lurbinectedin (LRB) are affected by co-administration of a moderate CYP3A4 inducer (bosentan, BOS) in adult patients with advanced solid tumors. Eleven patients were randomly assigned to Sequence 1 (LRB + BOS in Cycle 1 [C1] and LRB alone in Cycle 2 [C2]) or Sequence 2 (LRB alone in C1 and LRB + BOS in C2), and finally, eight patients (four per sequence) were considered evaluable for PK assessment. LRB (3.2 mg/m2, 1 h [h], intravenous) was administered alone or combined with multiple BOS administration (125 mg/12 h oral; 5.5 days). Co-administration with BOS decreased the systemic total exposure (area under the curve, AUC) of LRB by 21% for AUC0-t and 20% for AUC0-∞ and increased clearance by 25%. Co-administration with BOS did not significantly modify the unbound plasma LRB PK parameters. BOS increased the conversion of LRB to its metabolite M1, with no changes on its metabolite M4. The LRB safety profile was consistent with the toxicities previously described for this drug. No differences in terms of toxicity were found between LRB with and without BOS. In summary, the magnitude of the observed changes precludes a clinically relevant effect of BOS co-administration on LRB exposure and its safety profile.

7.
J Clin Pharmacol ; 64(5): 544-554, 2024 May.
Article in English | MEDLINE | ID: mdl-38105505

ABSTRACT

Tiragolumab is a first-in-class, fully human IgG1/kappa anti-TIGIT monoclonal antibody that blocks the binding of TIGIT to CD155 (the poliovirus receptor). We summarize the pharmacokinetics (PK) data from the phase 1a/1b GO30103 study of Q3W (every 3 weeks) sequential dosing of tiragolumab (2, 8, 30, 100, 400, 600, or 1200 mg) followed by atezolizumab (1200 mg), Q4W (every 4 weeks) sequential dosing (tiragolumab 840 mg followed by atezolizumab 1680 mg), and Q4W co-infusion (tiragolumab 840 mg plus atezolizumab 1680 mg). Serum samples were collected at multiple time points following tiragolumab and atezolizumab intravenous infusion in patients with solid tumors for PK and immunogenicity assessment. The serum PK profile of tiragolumab appeared to be biphasic, with a rapid distribution phase followed by a slower elimination phase when administered alone or in combination with atezolizumab. In phase 1a, across doses of tiragolumab ranging from 2 to 1200 mg (cycle 1), the geometric mean (GM), coefficient of variation (CV%), serum tiragolumab Cmax ranged from 0.682 to 270 µg/mL (18.6% to 36.5%) and Cmin ranged from 0.0125 to 75.3 µg/mL (0.0% to 24.2%). The GM systemic exposure (area under the plasma drug concentration-time curve, AUC0-21) ranged from 310 to 2670 µg day/mL (20.5% to 27.0%); interindividual variability in AUC0-21 ranged from 20.5% to 43.9%. Tiragolumab exposure increased in an approximately dose-proportional manner when administered alone or with atezolizumab at doses ≥100 mg. Postbaseline, 4/207 patients (1.9%) were positive for treatment-emergent antidrug antibodies (ADA) against tiragolumab, each at a single time point. Tiragolumab combined with atezolizumab demonstrated desirable PK properties, with no drug-drug interactions or immunogenicity liability. There were no meaningful differences in tiragolumab or atezolizumab exposure between the Q4W co-infusion and sequential dosing cohorts. ClinicalTrials.gov: NCT02794571 (date of registration June 6, 2016).


Subject(s)
Antibodies, Monoclonal, Humanized , Neoplasms , Humans , Neoplasms/drug therapy , Male , Female , Middle Aged , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Adult , Aged , Dose-Response Relationship, Drug , Infusions, Intravenous , Area Under Curve , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/administration & dosage
8.
J Hematol Oncol ; 16(1): 118, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38087293

ABSTRACT

Antibody-drug conjugates (ADCs) have emerged as a novel therapeutic strategy that has successfully reached patient treatment in different clinical scenarios. ADCs are formed by an antibody against a specific tumor-associated antigen (TAA), a cytotoxic payload, and a chemical linker that binds both. To this regard, most efforts have been focused on target identification, antibody design and linker optimization, but other relevant aspects for clinical development have not received the necessary attention. In this article using data from approved ADCs, we evaluated all characteristics of these agents, including payload physicochemical properties, in vitro potency, drug antibody ratio (DAR), exposure-response relationships, and clinical development strategies. We suggest that compounds with best options for clinical development include those with optimal payload physicochemical properties and cleavable linkers that would lead to a bystander effect. These modalities can facilitate the development of ADCs in indications with low expression of the TAA. Early clinical development strategies including changes in the schedule of administration with more frequent doses are also discussed in the context of an efficient strategy. In conclusion, we highlight relevant aspects that are needed for the optimal development of ADCs in cancer, proposing options for improvement.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Neoplasms , Humans , Immunoconjugates/therapeutic use , Immunoconjugates/chemistry , Antibodies/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Neoplasms/drug therapy
9.
Cancers (Basel) ; 15(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38001663

ABSTRACT

Background: patient-derived xenografts (PDXs) have defined the field of translational cancer research in recent years, becoming one of the most-used tools in early drug development. The process of establishing cancer models in mice has turned out to be challenging, since little research focuses on evaluating which factors impact engraftment success. We sought to determine the clinical, pathological, or molecular factors which may predict better engraftment rates in PDXs. Methods: between March 2017 and January 2021, tumor samples obtained from patients with primary or metastatic cancer were implanted into athymic nude mice. A full comprehensive evaluation of baseline factors associated with the patients and patients' tumors was performed, with the goal of potentially identifying predictive markers of engraftment. We focused on clinical (patient factors) pathological (patients' tumor samples) and molecular (patients' tumor samples) characteristics, analyzed either by immunohistochemistry (IHC) or next-generation sequencing (NGS), which were associated with the likelihood of final engraftment, as well as with tumor growth rates in xenografts. Results: a total of 585 tumor samples were collected and implanted. Twenty-one failed to engraft, due to lack of malignant cells. Of 564 tumor-positive samples, 187 (33.2%) grew at time of analysis. The study was able to find correlation and predictive value for engraftment for the following: the use of systemic antibiotics by the patient within 2 weeks of sampling (38.1% (72/189) antibiotics- group vs. 30.7% (115/375) no-antibiotics) (p = 0.048), and the administration of systemic steroids to the patients within 2 weeks of sampling (41.5% (34/48) steroids vs. 31.7% (153/329), no-steroids) (p = 0.049). Regarding patient's baseline tests, we found certain markers could help predict final engraftment success: for lactate dehydrogenase (LDH) levels, 34.1% (140/411) of tumors derived from patients with baseline blood LDH levels above the upper limit of normality (ULN) achieved growth, against 30.7% (47/153) with normal LDH (p = 0.047). Histological tumor characteristics, such as grade of differentiation, were also correlated. Grade 1: 25.4% (47/187), grade 2: 34.8% (65/187) and grade 3: 40.1% (75/187) tumors achieved successful growth (p = 0.043), suggesting the higher the grade, the higher the likelihood of success. Similarly, higher ki67 levels were also correlated with better engraftment rates: low (Ki67 < 15%): 8.9% (9/45) achieved growth vs. high (Ki67 ≥ 15%): 31% (35/113) (p: 0.002). Other markers of aggressiveness such as the presence of lymphovascular invasion in tumor sample of origin was also predictive: 42.2% (97/230) with lymphovascular vs. 26.9% (90/334) of samples with no invasion (p = 0.0001). From the molecular standpoint, mismatch-repair-deficient (MMRd) tumors showed better engraftment rates: 62.1% (18/29) achieved growth vs. 40.8% (75/184) of proficient tumors (p = 0.026). A total of 84 PDX were breast models, among which 57.9% (11/19) ER-negative models grew, vs. 15.4% (10/65) of ER-positive models (p = 0.0001), also consonant with ER-negative tumors being more aggressive. BRAFmut cancers are more likely to achieve engraftment during the development of PDX models. Lastly, tumor growth rates during first passages can help establish a cutoff point for the decision-making process during PDX development, since the higher the tumor grades, the higher the likelihood of success. Conclusions: tumors with higher grade and Ki67 protein expression, lymphovascular and/or perineural invasion, with dMMR and are negative for ER expression have a higher probability of achieving growth in the process of PDX development. The use of steroids and/or antibiotics in the patient prior to sampling can also impact the likelihood of success in PDX development. Lastly, establishing a cutoff point for tumor growth rates could guide the decision-making process during PDX development.

10.
Clin Transl Med ; 13(9): e1329, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37740463

ABSTRACT

INTRODUCTION: Antibody-drug conjugates (ADCs) are a family of therapeutic agents that have demonstrated clinical activity in several indications. MATERIAL AND METHODS: In this article, we performed a deep analysis of their clinical landscape matched with public genomic human datasets from tumour antigen targets (TATs), to identify empty areas for clinical development. RESULTS: We observed that TATs used in haematological malignancies were more specific than the ones developed in solid cancers. Those included CD19, CD22, CD30, CD33 and CD79b. In solid tumours, we identified TATs, with approved ADCs, widely expressed in non-explored niche indications like Enfortumab vedotin (anti-Nectin4) in lung or cervical cancer; Tisotumab vedotin (anti-TF) in glioblastoma or pancreatic cancer; and Sacituzumab govitecan (anti-TROP2) in pancreatic, gastric, thyroid or endometrial cancer, among others. Similarly, niche indications for ADCs in clinical development included targets for CD71, PSMA, PTK7 or CD74, in tumours like breast, lung, stomach or colon. Some of these TATs were essential for the survival of tumour cells like CD71, PSMA and PTK7. CONCLUSIONS: In summary, our study opens the door for further evaluation of ADCs in several indications not explored before.

11.
Front Immunol ; 14: 1229575, 2023.
Article in English | MEDLINE | ID: mdl-37638048

ABSTRACT

Targeting of the immune system has shown to be a successful therapeutic approach in cancer, with the development of check point inhibitors (ICI) or T-cell engagers (TCE). As immuno-oncology agents modulate the immune system to attack cancer cells and do not act directly on oncogenic vulnerabilities, specific characteristics of these compounds should be taken in consideration during clinical development. In this review we will discuss relevant concepts including limitations of preclinical models, special pharmacologic boundaries, clinical development strategies such as the selection of clinical indication, line of treatment and backbone partner, as well as the endpoints and expected magnitude of benefit required at different stages of the drug development. In addition, future directions for early and late trial designs will be reviewed. Examples from approved drugs or those currently in clinical development will be discussed and options to overcome these limitations will be provided.


Subject(s)
Neoplasms , Humans , Drug Development , Medical Oncology , Neoplasms/drug therapy
12.
Mol Cancer Ther ; 22(10): 1191-1203, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37420274

ABSTRACT

PF-06804103 is an anti-HER2 antibody-drug conjugate with auristatin payload. We evaluated its safety, tolerability, and antitumor activity in patients with advanced/unresectable or metastatic breast and gastric cancers. This multicenter, open-label, first-in-human, phase 1 study (NCT03284723) comprised dose escalation (P1) and dose expansion (P2). In P1, adults with HER2+ breast or gastric cancer received PF-06804103 0.15-5.0 mg/kg intravenously once/21 days (Q3W); in P2, patients with HER2+ or HER2-low (IHC 1+ or IHC 2+/ISH-) breast cancer received 3.0 or 4.0 mg/kg Q3W. The primary endpoints were dose-limiting toxicities (DLT) and safety (P1), and objective response rate (ORR) assessed using RECIST v1.1 (P2). Ninety-three patients enrolled in P1 (n = 47: HER2+ gastric cancer = 22, HER2+ breast cancer = 25) and P2 [n = 46: HER2+ breast cancer = 19, hormone receptor (HR)+ HER2-low breast cancer = 27] received PF-06804103. Four patients (3.0- and 4.0-mg/kg groups, n = 2 each) had DLTs (mostly Grade 3). Safety and efficacy results showed a dose-response relationship. Adverse events (AE) leading to treatment discontinuation (44/93, 47.3%) included neuropathy (11/93, 11.8%), skin toxicity (9/93, 9.7%), myalgia (5/93, 5.4%), keratitis (3/93, 3.2%), and arthralgia (2/93, 2.2%). Two (2/79, 2.5%) patients (P1, 4.0- and 5.0-mg/kg groups, n = 1 each) achieved complete response; 21 (21/79, 26.6%) achieved partial response. In P2, ORR was higher in HER2+ compared with HR+ HER2-low breast cancer [3.0 mg/kg: 16.7% (2/12) vs. 10.0% (1/10); 4.0 mg/kg: 47.4% (9/19) vs. 27.3% (3/11)]. PF-06804103 demonstrated antitumor activity; however, AEs led to discontinuation in 47.3% of patients. Safety and efficacy were dose-dependent.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Immunoconjugates , Stomach Neoplasms , Adult , Humans , Female , Stomach Neoplasms/drug therapy , Antineoplastic Agents/adverse effects , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Immunoconjugates/adverse effects , Receptor, ErbB-2
13.
Cancers (Basel) ; 15(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37370859

ABSTRACT

BACKGROUND: The identification of proteins in the cellular membrane of the tumoral cell is a key to the design of therapeutic agents. Recently, the bi-specific antibody amivantamab, targeting the oncogenic membrane proteins EGFR and MET, received regulatory approval for the treatment of adult patients with locally advanced or metastatic NSCLC. METHODS: The authors interrogated several publicly available genomic datasets to evaluate the expression of both receptors and PD-L1 in most of the solid and hematologic malignancies and focused on prostate adenocarcinoma (PRAD) and pancreatic adenocarcinoma (PAAD). RESULTS: In PAAD, EGFR highly correlated with PD-L1 and MET, and MET showed a moderate correlation with PD-L1, while in PRAD, EGFR, MET and PD-L1 showed a strong correlation. In addition, in tumors treated with immune checkpoint inhibitors, including anti-PD(L)1 and anti-CTLA4, a high expression of EGFR and MET predicted detrimental survival. When exploring the relationship of immune populations with these receptors, the authors observed that in PAAD and PRAD, EGFR moderately correlated with CD8+ T cells. Furthermore, EGFR and MET correlated with neutrophils in PRAD. CONCLUSIONS: The authors identified tumor types where EGFR and MET were highly expressed and correlated with a high expression of PD-L1, opening the door for the future combination of bi-specific EGFR/MET antibodies with anti-PD(L)1 inhibitors.

14.
Sci Transl Med ; 15(695): eabp9229, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37163618

ABSTRACT

This first-in-human study evaluated RO7122290, a bispecific fusion protein carrying a split trimeric 4-1BB (CD137) ligand and a fibroblast activation protein α (FAP) binding site that costimulates T cells for improved tumor cell killing in FAP-expressing tumors. Patients with advanced or metastatic solid tumors received escalating weekly intravenous doses of RO7122290 as a single agent (n = 65) or in combination with a 1200-milligram fixed dose of the anti-programmed death-ligand 1 (anti-PD-L1) antibody atezolizumab given every 3 weeks (n = 50), across a tested RO7122290 dose range of 5 to 2000 milligrams and 45 to 2000 milligrams, respectively. Three dose-limiting toxicities were reported, two at different RO7122290 single-agent doses (grade 3 febrile neutropenia and grade 3 cytokine release syndrome) and one for the combination (grade 3 pneumonitis). No maximum tolerated dose was identified. The pharmacokinetic profile of RO7122290 suggested nonlinearity in elimination. The observed changes in peripheral and tissue pharmacodynamic (PD) biomarkers were consistent with the postulated mechanism of action. Treatment-induced PD changes included an increase in proliferating and activated T cells in peripheral blood both in the single-agent and combination arms. Increased infiltration of intratumoral CD8+ and Ki67+CD8+ T cells was observed for both treatment regimens, accompanied by the up-regulation of T cell activation genes and gene signatures. Eleven patients experienced a complete or partial response, six of whom were confirmed to be immune checkpoint inhibitor naive. These results support further evaluation of RO7122290 in combination with atezolizumab or other immune-oncology agents for the treatment of solid tumors.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , CD8-Positive T-Lymphocytes/metabolism , Neoplasms/pathology , Fibroblasts/pathology
15.
Br J Cancer ; 129(2): 309-317, 2023 08.
Article in English | MEDLINE | ID: mdl-37237172

ABSTRACT

BACKGROUND: GSK3368715, a first-in-class, reversible inhibitor of type I protein methyltransferases (PRMTs) demonstrated anticancer activity in preclinical studies. This Phase 1 study (NCT03666988) evaluated safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of GSK3368715 in adults with advanced-stage solid tumors. METHODS: In part 1, escalating doses of oral once-daily GSK3368715 (50, 100, and 200 mg) were evaluated. Enrollment was paused at 200 mg following a higher-than-expected incidence of thromboembolic events (TEEs) among the first 19 participants, resuming under a protocol amendment starting at 100 mg. Part 2 (to evaluate preliminary efficacy) was not initiated. RESULTS: Dose-limiting toxicities were reported in 3/12 (25%) patients at 200 mg. Nine of 31 (29%) patients across dose groups experienced 12 TEEs (8 grade 3 events and 1 grade 5 pulmonary embolism). Best response achieved was stable disease, occurring in 9/31 (29%) patients. Following single and repeat dosing, GSK3368715 maximum plasma concentration was reached within 1 h post dosing. Target engagement was observed in the blood, but was modest and variable in tumor biopsies at 100 mg. CONCLUSION: Based on higher-than-expected incidence of TEEs, limited target engagement at lower doses, and lack of observed clinical efficacy, a risk/benefit analysis led to early study termination. TRIAL REGISTRATION NUMBER: NCT03666988.


Subject(s)
Antineoplastic Agents , Neoplasms , Adult , Humans , Antineoplastic Agents/adverse effects , Enzyme Inhibitors/adverse effects , Maximum Tolerated Dose , Neoplasms/pathology , Treatment Outcome
16.
Br J Cancer ; 128(8): 1418-1428, 2023 04.
Article in English | MEDLINE | ID: mdl-36797356

ABSTRACT

BACKGROUND: Many patients do not respond or eventually relapse on treatment with programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) checkpoint inhibitors due to secondary or acquired resistance; therefore, there is a need to investigate novel PD-1/PD-L1 inhibitors. METHODS: This open-label, non-randomised study investigated the safety and anti-tumour activity of BGB-A333, a PD-L1 inhibitor, alone and in combination with tislelizumab in patients with advanced solid tumours with progression during/after standard therapy. The primary objectives were to determine the recommended Phase 2 dose (RP2D), safety and tolerability for BGB-A333 alone and in combination with tislelizumab (Phase 1a/1b) and to determine the overall response rate (ORR) with BGB-A333 plus tislelizumab (Phase 2). RESULTS: Overall, 39 patients across Phase 1a (N = 15), 1b (N = 12) and 2 (N = 12) were enroled. In Phase 1a, an RP2D of 1350 mg was determined. In Phase 1a and 1b/2, serious treatment-emergent adverse events (TEAEs) were reported in five and eight patients, respectively. Two patients experienced TEAEs that led to death. In Phase 2, the ORR was 41.7% (n = 5/12; 95% confidence interval: 15.17%, 72.33%). CONCLUSIONS: TEAEs reported with BGB-A333 were consistent with other PD-L1 inhibitors. Encouraging preliminary anti-tumour activity was observed with BGB-A333 in combination with tislelizumab. CLINICAL TRIAL REGISTRATION: NCT03379259.


Subject(s)
B7-H1 Antigen , Immune Checkpoint Inhibitors , Humans , Programmed Cell Death 1 Receptor , Neoplasm Recurrence, Local/drug therapy , Antibodies, Monoclonal/adverse effects
17.
Blood ; 141(17): 2114-2126, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-36720090

ABSTRACT

Activation of apoptosis in malignant cells is an established strategy for controlling cancer and is potentially curative. To assess the impact of concurrently inducing the extrinsic and intrinsic apoptosis-signaling pathways in acute myeloid leukemia (AML), we evaluated activity of the TRAIL receptor agonistic fusion protein eftozanermin alfa (eftoza; ABBV-621) in combination with the B-cell lymphoma protein-2 selective inhibitor venetoclax in preclinical models and human patients. Simultaneously stimulating intrinsic and extrinsic apoptosis-signaling pathways with venetoclax and eftoza, respectively, enhanced their activities in AML cell lines and patient-derived ex vivo/in vivo models. Eftoza activity alone or plus venetoclax required death receptor 4/5 (DR4/DR5) expression on the plasma membrane but was independent of TP53 or FLT3-ITD status. The safety/tolerability of eftoza as monotherapy and in combination with venetoclax was demonstrated in patients with relapsed/refractory AML in a phase 1 clinical trial. Treatment-related adverse events were reported in 2 of 4 (50%) patients treated with eftoza monotherapy and 18 of 23 (78%) treated with eftoza plus venetoclax. An overall response rate of 30% (7/23; 4 complete responses [CRs], 2 CRs with incomplete hematologic recovery, and 1 morphologic leukemia-free state) was reported in patients who received treatment with eftoza plus venetoclax and 67% (4/6) in patients with myoblasts positive for DR4/DR5 expression; no tumor responses were observed with eftoza monotherapy. These data indicate that combination therapy with eftoza plus venetoclax to simultaneously activate the extrinsic and intrinsic apoptosis-signaling pathways may improve clinical benefit compared with venetoclax monotherapy in relapsed/refractory AML with an acceptable toxicity profile. This trial was registered at www.clinicaltrials.gov as #NCT03082209.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Antineoplastic Agents/therapeutic use , Leukemia, Myeloid, Acute/pathology , Bridged Bicyclo Compounds, Heterocyclic , Sulfonamides , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
18.
Invest New Drugs ; 41(1): 93-104, 2023 02.
Article in English | MEDLINE | ID: mdl-36538259

ABSTRACT

Mitazalimab is an agonistic human monoclonal antibody targeting CD40, a target for anti-tumor immunotherapy. This phase 1, dose-escalation study evaluated the safety, dose-limiting toxicities (DLTs), pharmacokinetic and pharmacodynamic profile of mitazalimab. Adults with advanced solid malignancies received mitazalimab intravenously once every-2-weeks. Dose-escalation was pursued with and without pre-infusion corticosteroids for mitigation of infusion-related reactions (IRRs). In all, 95 patients were enrolled in 7 cohorts (n = 50, 75-2000 µg/kg) with corticosteroids and in 5 cohorts (n = 45, 75-1200 µg/kg) without corticosteroids. Two patients experienced DLTs (transient Grade-3 headache; Grade-3 drug-induced liver injury [Hy's law]). The most frequently reported (≥ 25%) treatment-emergent adverse events were fatigue (44.2%), pyrexia (38.9%), pruritus (38.9%), chills (27.4%), and headache (26.3%). IRRs were reported in 51.6% of patients; pruritus (30.5%; with corticosteroids [36.0%], without corticosteroids [24.4%]) was the most frequent. Following the first infusions of 600 µg/kg and 2000 µg/kg, mitazalimab was rapidly cleared from the systemic circulation with mean terminal half-life of 11.9 and 24.1 h, respectively. Pharmacokinetics appeared to exhibit target-mediated drug disposition at the tested doses. Mitazalimab treatment induced higher levels of selected chemokines and transient reduction of B-cells, T-cells, and NK cells. One patient (renal cell carcinoma) displayed partial response lasting 5.6 months. Stable disease was reported by 35 (36.8%) patients, persisting for ≥ 6 months in 9 patients. Mitazalimab has a manageable safety profile with acceptable pharmacokinetic and pharmacodynamic properties. Future clinical development will evaluate combination with existing treatment options. Trial registration NCT02829099 (ClinicalTrials.gov; July 7, 2016).


Subject(s)
Antibodies, Monoclonal , Neoplasms , Adult , Humans , Administration, Intravenous , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Dose-Response Relationship, Drug , Neoplasms/drug therapy , Neoplasms/pathology , CD40 Antigens
19.
J Immunother Cancer ; 11(11)2023 11 21.
Article in English | MEDLINE | ID: mdl-38243906

ABSTRACT

BACKGROUND: ANV419 is a stable antibody-cytokine fusion protein consisting of interleukin-2 (IL-2) fused to an anti-IL-2 monoclonal antibody that sterically hinders binding of IL-2 to the α subunit of its receptor but has selective affinity for the receptor ßγ subunits. Thus, ANV419 preferentially stimulates CD8+ effector T cells and natural killer cells which are associated with tumor killing, while minimizing the activation of immunosuppressive regulatory T cells. METHODS: ANV419-001 is an open-label, multicenter, phase 1 study to evaluate the safety, tolerability, maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of ANV419. Secondary objectives were to characterize the pharmacokinetics, pharmacodynamics and tumor response. Adult patients with advanced solid tumors and disease progression after ≥1 previous line of systemic therapy were enrolled. ANV419 was administered by intravenous infusion once every 2 weeks, with a planned treatment duration of 12 months. The dose escalation part of the study explored doses 3, 6 and 12 µg/kg as single patient cohorts followed by 24-364 µg/kg in a 3+3 design. Interim results are reported here (data cut-off: March 22, 2023). RESULTS: Forty patients were enrolled and received at least one dose of ANV419. The MTD and RP2D were determined to be 243 µg/kg. The most common ANV419-related treatment-emergent adverse events were Grade 1 and 2 fever (31 (77.5%)), chills (23 (57.5%), vomiting (14 (35.0%)), cytokine release syndrome and nausea (12 (30.0%) each). Transient and self-limiting lymphopenia due to lymphocyte redistribution was observed in all patients. In the RP2D cohort, Grade ≥3 thrombocytopenia and fever were reported by one patient (12.5%) each. All events were manageable with standard supportive care. At doses of 243 µg/kg (RP2D/MTD), the estimated T1/2 was approximately 12 hours. At ANV419 doses ≥108 µg/kg, 64% of patients had a best response of at least SD (15 SD and 1 confirmed PR). CONCLUSIONS: ANV419 at doses up to 243 µg/kg (the RP2D) was well tolerated and showed signs of antitumor activity in a heavily pretreated patient population with advanced solid tumors. TRIAL REGISTRATION NUMBER: NCT04855929.


Subject(s)
Neoplasms , Recombinant Fusion Proteins , Adult , Humans , Neoplasms/pathology , Neoplasms/therapy , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/adverse effects
20.
Invest New Drugs ; 40(6): 1263-1273, 2022 12.
Article in English | MEDLINE | ID: mdl-35947247

ABSTRACT

Lurbinectedin and paclitaxel showed synergism in preclinical studies and have non-completely overlapping toxicity profiles. This phase I trial evaluated a combination of paclitaxel and lurbinectedin with/without bevacizumab in advanced tumors. This trial was divided into Group A, which evaluated weekly paclitaxel (60 or 80 mg) plus lurbinectedin (3.0-5.0 mg flat dose [FD] or 2.2 mg/m2) every 3 weeks in advanced solid tumors; and Group B, which evaluated bevacizumab (BEV, 15 mg/kg) added to the recommended dose (RD) defined in Group A in advanced epithelial ovarian or non-small cell lung cancer (NSCLC). 67 patients (A, n = 55; B, n = 12) were treated. The RD was paclitaxel 80 mg/m2 on Day (D)1,D8 plus lurbinectedin 2.2 mg/m2 on D1. At this RD, myelotoxicity was reversible and manageable, and most non-hematological toxicities were mild/moderate. Adding BEV did not notably change tolerability. Twenty-five confirmed responses were observed: 20/51 evaluable patients in Group A (overall response rate [ORR] = 39% at all dose levels and at the RD), and 5/10 evaluable patients in Group B (ORR = 50%). Most responders had breast (n = 7/12 patients), small cell lung (SCLC) (n = 5/7), epithelial ovarian (n = 3/9) and endometrial cancer (n = 3/11) in Group A, and epithelial ovarian (n = 3/4) and NSCLC (n = 2/6) in Group B. Clinical benefit rate was 61% in Group A (58% at the RD), and 90% in Group B. No major pharmacokinetic drug-drug interactions were observed. Paclitaxel/lurbinectedin and paclitaxel/lurbinectedin/BEV are feasible combinations. Further development is warranted of paclitaxel/lurbinectedin in SCLC, breast, and endometrial cancer, and of paclitaxel/lurbinectedin/BEV in epithelial ovarian cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Non-Small-Cell Lung , Endometrial Neoplasms , Lung Neoplasms , Female , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Paclitaxel/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...